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A transmission-line matrix (TLM) model is applied to the simulation of sound
wave propagation. Two-dimensional and axisymmetric TLM elements are first
developed for both linear and non-linear sound field applications. A digital filter
expression equivalent to the two-dimensional TLM element is also developed. The
program is implemented on a computer and the validity and accuracy of the model
are examined for a plane wave in an acoustic tube. Some simulated examples are
then demonstrated for the two-dimensional and axisymmetric sound wave
propagation problems. The results are compared with finite element solutions. To
cope with the ambiguity of discretization errors, the introduction of Gaussian
filtering capability is proposed.
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1. INTRODUCTION

Sound wave propagation and radiation problems lead to the solution of the wave
equation in the time domain or Helmholtz equation in the frequency domain under
the proper boundary conditions. As analytical solutions are not always possible
for general boundary shape and conditions, the numerical approach must be
adopted by the use of finite difference, finite element or boundary element method.
They can be said to be based on the mathematical or numerical modelling in which
the differential equation is numerically solved.

On the other hand, there is the alternative simulation approach based on
physical modelling in which the process of a phenomenon is honestly traced. The
discrete Huygens’ model is a good candidate for this approach. According to
Huygens, a wave front consists of a number of secondary radiators which give rise
to spherical wavelets. The envelope of these wavelets forms a new spherical wave
front. As a consequence of the repetiton of this mechanism, Huygens explained
the cause of the wave propagation. This process can be directly implemented on
a digital computer for a field discretized in time and space. The discrete Huygens’
model is a synonym for the Transmission-Line Matrix method or Transmission-
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Line Matrix model (TLM). The method is inherently a time domain approach,
which does not require the solution of the differential equation.

The TLM method was first developed by P. B. Johns applied to electromagnetic
waveguide problems [1, 2]. The name is given after the equivalence between the
electromagnetic field equations and the transmission line circuit equations. The
development has been well documented in the literature by Hoefer [3, 4], Sadiku
and Agba [5] and others [6]. One of the present authors had tried the application
of the method to the acoustic field problems but without much success due to the
immature capability of the computer [7, 8]. Saleh and Blanchfield [9] recently
applied the method to the acoustic radiation from array transducers. The circuit
theory and electromagnetic field theory have historically been developed
independently and have also been taught separately, but the circuits are essentially
the spatially discrete expression of continuum fields. The acoustical engineers
sometimes preferred the equivalent circuit approach to the analysis and the design
of electro-acoustic devices. The finite element equivalent circuit expression to the
acoustic fields have been reported [10, 11].

The present paper discusses the application of the transmission-line matrix
method or a Huygens’ discrete model to the acoustic field problems. The
fundamental characteristic of the sound wave in the transmission-line modelling
is examined, and then the analysis is extended to include the non-linear effect due
to the pressure for the intense sound wave field with some examples.

2. THEORY

2.1.  ’     [3, 4]

We consider here the sound wave propagation radiated from a point source as
shown in Figure 1, in which the sound wave radiates spherically from the point
source. According to Huygens, a wave front consists of a number of secondary
point sources which give rise to spherical wavelets, and the envelope of these
wavelets forms a new spherical wavefront which again gives rise to a new
generation of spherical wavelets.

Figure 1. Huygens’ principle.
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Figure 2. Discrete Huygens’ model and TLM models.

Now we consider the Huygens’ principle in the discrete sense in order to
implement this process of sequences on a digital computer. The two-dimensional
sound space is first considered in which the above mentioned process occurs
adhering to the Cartesian coordinates directions. An array of nodes and mesh
which are separated by the distance Dl are shown in the left figure of Figure 2(a).
The propagation takes place between isolated nodes of the matrix. When a
sound-impulse of unit amplitude or delta function is incident on one of the nodes,
the sound-impulses scatter in four directions as shown in the right figure of
Figure 2(a) like a collision of elastic balls. Each scattered pulse has one-quarter
of the incident energy, and thus the magnitude of the scattered pulse is 1/2, in
which the coefficient of the reflected one to the incident direction is negative.

This is equivalent to the travelling of the pulses over an orthogonal mesh made
of pairs of transmission lines, or TLM as shown in Figure 2(b). A pair of
orthogonally connected transmission lines forms impedance discontinuity at the
node because the characteristic impedance is the same for each branch and three
branches are connected in parallel to one at the node, so that the impedance from
one node is one-third of that of the incidence branch. When a voltage-impulse of
amplitude V is incident on one of the branches, the scattering similar to what is
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shown in Figure 2(a) takes place at the node due to impedance discontinuity.
Acoustical analogy is depicted in Figure 2(c), as the transmission lines correspond
to the thin acoustic tubes. The crossed acoustic tubes also form impedance
discontinuity at their junction, so that the same sort of scattering also takes place.

We then proceed to the more general case in which four impulses P1 0P4 are
incident to the four branches at the same time t= kDt (where Dt=Dl/c is the time
delay required for a pulse to travel the distance Dl, c is propagation speed along
the branch and k is the integer) as shown in Figure 3(a). The response can be
obtained by superposing the contribution from all branches. The scattered impulse
Sn at branch n at time t+Dt=(k+1)Dt is given as

k+1Sn =
1
2

s
4

m=1
kPm − kPn (1)

where kPn is incident impulse at the branch n at time t= kDt. This equation can
be rewritten in the expression of a scattering matrix as

S1 −1 1 1 1 P1
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S3 =
1
2 1 1 −1 1 P3 . (2)

k+1 S4 1 1 1 −1 k P4

Pressure Pi,j at the node is given by

kPi,j =
1
2

s
4

n=1
kPn (3)

where subscripts i, j represent the node position (x, y)= (iDl, jDl).

Figure 3. Scattering at a node.
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The scattered pulses travel along the branches in the reversal directions. When
the field is divided into square meshes, the scattered pulses become incident pulses
to the adjacent elements at whose node scattering again takes place. The incident
pulses on a node at position (i, j) are represented by the scattered pulses at the
adjacent nodes as

k+1P1
i,j = k+1S3

i−1,j , k+1P3
i,j = k+1S1

i+1,j

k+1P2
i,j = k+1S4

i,j+1, k+1P4
i,j = k+1S2

i,j−1. (4)

Repeating the operation of equations (2)–(4) on all nodes, the impulse response
of the field can be traced at successive time intervals. The method is inherently
a time domain solution method which is quite suitable for the simulation and
visualization of a wave behavior on the computer. Equation (3) indicates the
average theorem given in the finite difference solution of Poisson’s equation. The
method is numerically equivalent to the FD–TD method. However, TLM provides
a physical model, which does not require the solution of the wave equation.

2.2.      -  

In this section, we intend to find analogue and digital equivalent circuits to the
two-dimensional discrete Huygens’ model or TLM model.

2.2.1. Analogous equivalent circuit

Figure 4 shows the distributed and lumped circuits equivalent to an element of
a two-dimesional TLM model. Referring to Figure 4, one applies Kirchhoff’s
current and voltage laws to derive the line equations in which as Dl:0 we arrive
at the following differential equations:

−
1Ix

1x
−

1Iy

1y
=2C

1V
1t

(5)

Figure 4. Two-dimensional TLM element and its equivalent circuit.
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−
1V
1x

=L
1Ix

1t
, −

1V
1y

=L
1Iy

1t
(6)

where the line parameters L and C are inductance and capacitance per unit length
respectively. These equations are combined to give

12V
1x2 +

12V
1y2 =

1
c2

T

12V
1t2 (7)

where cT (=1/z2LC) is propagation speed over the circuit. This is a wave
equation in two-dimensional TLM network.

Consideration is then made for the continuity equation and the linear force
equation for the two-dimensional sound field, which are

−
1ux

1x
−

1uy

1y
=

1
k

1p
1t

(8)

−
1p
1x

= r
1ux

1t
, −

1p
1y

= r
1uy

1t
(9)

where ux and uy are the particle velocities in x and y directions, p is the sound
pressure, r is the mass density and k is the compressibility. Combining equations
(8) and (9), one derives the wave equation with respect to sound pressure p as

12p
1x2 +

12p
1y2 =

1
c2

0

12p
1t2 (10)

where c0 =zr/k is the sound speed in free space. Comparing equations (8)–(10)
with equations (5)–(7) yields the equivalence between the parameters, which are
shown in Table 1. In the above comparison, correspondence exists for r and k to
L and 1/2C respectively. Therefore, the correspondence for the propagation
speed is

cT =
1

z2
c0. (11)

The sound speed of the TLM network is 1/z2 of the sound speed c0 in the free
space.

To derive the transmission characteristic of the TLM model in frequency
domain, a two port network corresponding for a single element on x–z plane is

T 1

Equivalence between acoustic field parameters and transmission line
model parameters

Acoustic field parameters p ux uy r 1/k

Transmission line model parameters V Ix Iy L 2C
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used [1]. The voltage V1 and current I1 at branch 1 relate to those at branch 3 by
the transfer matrix equation given as

$V1

I1 %=$ 1−4 sin2 (u/2)
j4 sin (u/2) cos (u/2)/Z0

j2 sin (u/2) cos (u/2){1− tan2 (u/2)}Z0

1−4 sin2 (u/2) %$V3

I3 %
(12)

where u=2pDl/l (l is wavelength), and Z0 is the characteristic impedance of a
branch. If the wave propagates over the periodic structure like TLM network, the
propagation constant gp = ap + jbp (where ap is attenuation constant, bp is phase
constant) is given by

cosh (gpDl)=1−4 sin 2(u/2). (13)

For the element smaller than the wavelength (Dl/lQ 1/4), the propagation velocity
cp over the two-dimensional TLM network is given as

cp = c0
pDl

l sin −16z2 sin 0pDl
l 17

(14)

The propagation velocity has dispersion characteristics. For the very low
frequency range (Dl/l�1/4), the propagation velocity in the two-dimensional
network approaches c0/z2, which agrees with equation (11), while the
propagation speed becomes lower as it goes into the higher frequency. The cutoff
frequency is Dl/l=0·25.

2.2.2. Digital equivalent circuit

In the TLM model, the sound propagation is simulated as the consequence of
the impulses in each element. In this section a multi-port digital filter modelling
whose impulse response is equivalent to equation (2) is proposed.

The digital filter equivalence is shown in Figure 5. This is the FIR digital filter.
As in the previous section, consideration is also given to sound propagation in a
plane wave or one-dimensional field. To consider the one-dimensional case, input
and output ports are taken at port 1 and 3 which are open-circuited while the
branches 2 and 4 are short-circuited, which corresponds to the boundary condition
on a rigid wall. Under these circumstances, P1 is applied to port 1, and the impulse
response at port 3 at time t= kDt is given from equation (2) as

kS3 = 1
2(k−1P1 + k−2P1). (15)

Applying the z transformation to this expression, the transfer function is given as

H	 (z)= 1
2z

−1(1+ z−1) (16)

Substituting z=ej2p(Dl/l), one derives the following transfer frequency characteristic

H	 (ej2p(Dl/l))= cos 0p Dl
l 1 ej3p(Dl/l). (17)
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Figure 5. Digital circuit equivalent to a TLM element.

The characteristics is shown in Figure 6 (bold lines). In the figure, the phase
characteristic corresponds to the propagation speed normalized by the speed c0 in
free space. The amplitude characteristic is of the low-pass filter. The propagation
speed is almost independent of the frequency with the value of 0·667c0. This is
slightly smaller than c0/z2 of the analogous equivalent circuit. The characteristics

Figure 6. Transfer characteristics of the digital filter equivalent to the TLM model for plane wave
or one-dimensional sound propagation field. ——, open circuit, ——, reflectionless termination.
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evaluated by the Fourier transformation of the impulse response of the TLM
element is in agreement with what is shown in Figure 6. The digital filter model
is thus appropriate for the equivalent expression of the TLM model.

The sound propagation in the one-dimensional field of infinite length or without
reflection is then considered. To provide the reflectionless boundary, ports 1 and
3 must be terminated by the characteristic impedance which is created by a certain
feedback loop to provide the scattering from the adjacent nodes. The transfer
function in z-domain is given by

H	 (z)=
1
2

z−1(1+ z−1)
(1+ az−1)(1− az−2)

(18)

where a is the gain of the feedback loop. For the non-reflective termination, the
parameter a is chosen to be (1−z2)/(1+z2). The transfer frequency
characteristic is evaluated by

H	 (ej2p(Dl/l))= cos 0p Dl
l 1 ej3p(Dl/l)

(1+ aej2p(Dl/l))(1− aej4p(Dl/l))
. (19)

The frequency characteristics calculated by equation (19) is shown in Figure 6 (fine
lines), which again shows a low pass filter characteristic. The amplitude is flat in
the lower pass band (Dl/lQ 0·2) whose value is about 3% larger than a unit. The
error occurs due to the fact that the boundary is not perfectly reflectionless. The
propagation speed now slightly depends on the frequency. The speed in the lower
frequency range is however in good agreement with that of the analogous
equivalent circuit (c0/z2).

2.3.    

In the previous chapter, we introduced some boundary conditions without
explicit explanation. We next discuss the boundary conditions. The boundaries to
be considered here are the cases of a rigid wall, a sound absorbing wall and a wall
driven by the velocity source. In TLM modelling, these boundaries are usually
placed halfway between two nodes or at the ends of the element’s branch arms
as shown in Figure 7 which can be achieved there by introducing the reflection
coefficient R.

For the rigid wall, the reflection coefficient R is 1, so that the end of branch
n which faces the rigid wall must be open circuited as shown in Figure 7(a). To
implement this condition, the following relation is applied:

kPn = kSn. (20)

For the sound absorbing wall, the boundary is terminated with a resistive load
Za . The reflection coefficient is defined as

R=
Za −Z0

Za +Z0
(21)

where Z0(= r0c0) is the characteristic impedance of the branch or the medium.
However, this reflection coefficient R is not equal to the reflection coefficient for
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Figure 7. Branches contacting with typical boundaries.

the wave reflecting at the wall of the TLM network where the sound speed cT is
different from the one over a single arm or a branch. In this particular case for
the wave perpendicularly incident into the wall, as shown in Figure 7(b) the
reflection coefficient G is defined as

G=
Za −ZT

Za +ZT
(22)

where ZT (= r0cT ) is the characteristic impedance for sound propagating in the
network. Combining equations (21) and (22), one has the relation between R and
G as

R=
(1+G)−z2(1−G)

(1+G)+z2(1−G)
. (23)

To implement the reflection coefficient G into the TLM model, the following
relation is applied:

kPn =RkSn. (24)

In the special case of the non-reflective boundary in which G is set to 0, R is
given as

R=
1−z2

1+z2
. (25)

This non-reflective boundary condition is only exact for the case of perpendicular
incidence. For waves striking the boundary at an arbitrarily incident angle, other
treatments must be devised [12].
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For the velocity drive, the pulse is excited on the branches of the elements. With
the driving velocity u0, the following pressure pulse train should be applied to the
branch.

kPn =ZTu0. (26)

2.4.      

In the preceding discussions, we assumed that the medium was homogeneous
and lossless. We here consider the more general cases of inhomogeneous and lossy
media.

To vary the sound speed in the TLM element, a stub or an additional branch
to the node is introduced as shown in Figure 8(a). The stub with length Dl/2 of
characteristic admittance Y is open-circuited at another end. At the lower
frequency range, the stub acts as a lumped shunt capacitance of ChDl/2 where
h(=Y/Y0) is normalized characteristic admittance and Y0 is characteristic
admittance of the main branches. Addition of the equivalent shunt capacitance to
the node increases the equivalent medium compressibility. The total shunt
capacitance at the node becomes

C'=2CDl(1+ h/4). (27)

The sound speed c'T in the two-dimensional TLM element with the open-circuited
stub is thus given as

c'T =X 2
h+4

c0. (28)

The sound speed can be adjusted or decreased by varying the normalized
characteristic admittance h of the additional stub in which the sound speed cannot
exceed cT because he 0.

Figure 8. Two-dimensional TLM element with additional open stub branch and sound absorbing
stub.
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When a sound impulse of amplitude P is applied to the branch 1, the impulses
scatter respectively in five directions. The scattering matrix with the open-circuited
stub is given as

S1 −1− h/2 1 1

S2 1 −1− h/2 1

S3 =
2

4+ h
1 1 −1− h/2G

G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k
S4 1 1 1

k+1 S5 1 1 1

1 h P1

1 h P2

1 h P3 (29)G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l
−1− h/2 h P4

1 −2+ h/2 k P5

where subscript 5 refers to the stub which is in fact not connected to any of the
network. The impulse scattered at the node into the stub is then reflected at the
open end and becomes the incident pulse into the same node, so that k+1P5 =
k+1S5. The pressure at the node is given as

kPi,j =
2

h+4
s
4

n=1
kPn +

2h

h+4 kP5. (30)

To model the lossy medium, another 6th branch or a stub is introduced as
illustrated in Figure 8(a), which provides a power dissipation. The stub with the
conductance G(= zY0) is non-reflectively terminated at the other end. It
corresponds to an additional shunt resistor to the node. The non-reflective
termination at the stub end means that the stub is regarded as of infinite length
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or terminated with the characteristic resistor (G) to match. The scattering matrix
is thus given as

S1 −1− z/2 1 1 1 0

S2 1 −1− z/2 1 1 0

S3 =
2

4+ z
1 1 −1− z/2 1 0G

G

G
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G
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k
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G

G
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l
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l
S4 1 1 1 −1− z/2 0

k+1 S6 1 1 1 1 0

P1

P2

P3 (31)G
G

G

G

G

K

k

G
G

G

G

G

L

l
P4

k P6

where superscript 6 denotes the stub or 6th branch for the absorption. If both stubs
are included together, the scattering matrices (29) and (31) are combined to give

S1 −1−(h+ z)/2 1 1

S2 1 −1−(h+ z)/2 1

S3 =
2

4+ h+ z
1 1 −1−(h+ z)/2G

G

G

G

G
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k

G
G

G

G

G

L

l

G
G

G

G

G

K

k
S4 1 1 1

k+1 S5 1 1 1

1 h P1

1 h P2

1 h P3 (32)G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l
−1−(h+ z)/2 h P4

1 (h− z−4)/2 k P5

S6 is missing in the equation as the pulse P6 for the damping expression is not
reflected back into the node. The pressure at the node is given as

kPi,j =
h+4

h+ z+4 0 2
h+4

s
4

n=1
kPn +

2h

h+4 kP51. (33)
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Comparing equation (33) with equation (30), the damping ratio x for an element
is given as

x=
h+4

h+ z+4
(34)

for which attenuation constant a is

a=
z2
Dl

ln
h+4

h+ z+4
. (35)

Next the case of the discontinuous mass density of the media is considered. In
order to simplify the question, the case in which the two media whose respective
mass densities are r1 and r2 but whose sound speeds are the same is taken. This
is illustrated in Figure 9(a). The reflection and the transmission take place at the
interface between the two media due to the impedance discontinuity. The reflection
and transmission coefficients at the interface are respectively given as

R11 =
r2 − r1

r2 + r1
, T12 =

2r1

r2 + r1

T21 =
2r2

r1 + r2
, R22 =

r1 − r2

r1 + r2
(36)

Figure 9. Reflection and transmission due to density discontinuity.
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where the subscripts indicate each medium. To model such a situation,
introduction is made for an ideal transformer of turn’s ratio 1:r1/r2 between the
two media as shown in Figure 9(b). The reflection and transmission of the impulses
are thus expressed as

$ k+1P3
i,j

k+1P1
i+1,j%=$R11

T21

T12

R22%$ k+1S3
i,j

k+1S1
i+1,j%. (37)

2.5.    

Since a scalar wave field is of interest, the three-dimensional axisymmetric field
can simply be modelled as a two-dimensional field in which the medium density
is the function of the radial distance as

r(r)=
r0

2pr
(38)

where r is the distance from the central axis. In this case, the characteristic
impedance of each branch has a different value as shown in Figure 10 where rj

is the distance from the central axis to the node (i, j). The reflection coefficients
from each branch are given as

R1 =R3 = − 1
2

R2 = −
1
2
+

Dl
4rj

, R4 = −
1
2
−

Dl
4rj

. (39)

Figure 10. Characteristic impedance of each branch in an axisymmetric TLM element.
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The scattering matrix is given as

S1 −1 1+
Dl
2rj

1 1−
Dl
2rj

P1

S2 1 −1+
Dl
2rj

1 1−
Dl
2rj

P2

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

S3 =
1
2 1 1+

Dl
2rj

−1 1−
Dl
2rj

P3 . (40)

k+1

S4 1 1+
Dl
2rj

1 −1−
Dl
2rj k

P4

2.6.       

The discretization error for the TLM model is examined in this section. The
relation between the incident pulses and the scattered pulses in the adjacent nodes
surrounding a node can be written in terms of the pressure at the node.
Substituting equations (1) and (3) into equation (4) and eliminating the pulses
kP1 0 kP4, we have the expression with respect to the pressure at a node and those
surrounding it as follows

kPi−1,j + kPi+1,j + kPi,j−1 + kPi,j+1 −4kPi,j =2(k−1Pi,j −2kPi,j + k+1Pi,j ). (41)

This expression is the same as the finite difference–time domain (FD–TD)
expression for a two-dimensional wave equation. Therefore TLM method is
nothing but the FD–TD method’s in numerical counterpart; while the TLM is a
physical model, the FD–TD is a mathematical one. For error estimation, equation
(41) is expanded into the Taylor series around kPi,j . Then the following differential
equation results:

12
kPi,j

1x2 +
12

kPi,j

1y2 =
1
c2

T

12
kPi,j

1t2

−
2

Dl2 6Dl4

4! 014
kPi,j

1x4 +
14

kPi,j

1y4 1+
Dl6

6! 016
kPi,j

1x6 +
16

kPi,j

1y6 1+· · · 7
+

4
Dl2 6Dt4

4!
14

kPi,j

1t4 +
Dt6

6!
16

kPi,j

1t6 + · · · 7. (42)

This differential equation expresses the wave over the two-dimensional TLM
network in which the higher order terms are due to the discretization. The higher
order terms lead to the fluctuation error in the discretized simulation. The error
becomes larger where the sound pressure rapidly changes with time and space. As
in the other numerical methods, the TLM method also requires the fine mesh for
an accurate solution.
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Figure 11. Weighting matrix for Gaussian spatial filtering.

In the axisymmetric case, the following differential equation results:

12
kPi,j

1r2 +
1
r

1kPi,j

1r
+

12
kPi,j

1z2 =
1
c2

T

12
kPi,j

1t2

−
2

Dl2 6Dl4

4! 014
kPi,j

1r4 +
14

kPi,j

1z4 1+
Dl6

6! 016
kPi,j

1r6 +
16

kPi,j

1z6 1+· · · 7
+

4
Dl2 6Dt4

4!
14

kPi,j

1t4 +
Dt6

6!
16

kPi,j

1t6 + · · · 7
−

1
rDl 6Dl3

3!
13

kPi,j

1r3 +
Dl5

5!
15

kPi,j

1r5 + · · · 7. (43)

It has the same order of the higher terms as in the two-dimensional case, in which
additional terms with 1/r are present. Due to these terms, the error increases as
the node is placed closer to the central axis.

To reduce fluctuation errors due to the higher order terms, a two-dimensional
Gaussian filter is devised into the TLM as is used for graphical processing. The
pressure Pi,j at the node is obtained by averaging the pressures at the adjacent
nodes which are weighted by the coefficient matrix as shown in Figure 11(a). The
pressure P� i,j is now evaluated as

P� i,j = {Pi,j +e−m(Pi−1,j +Pi+1,j +Pi,j−1 +Pi,j+1)

+ e−2m(Pi−1,j−1 +Pi+1,j−1 +Pi−1,j+1 +Pi+1,j+1)}/(1+4e− m +4e−2m) (44)

where m is a parameter to be controlled. This is a spatial or two-dimensional
low-pass filter. To implement the algorithm, the first term of the right-hand side
of equation (1) is replaced by equation (44). For the axisymmetric case, the
weighting matrix is also shown in Figure 11(b).
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2.7.    - 

We here include the non-linearity in a medium. The non-linear effect is
essentially caused by the dependence of the sound speed on the local sound
pressure, which is expressed as follows [13–15]:

cn (p)=01+
np

r0c2
01c0 (45)

where p is local sound pressure, n is non-linear parameter of the medium, r0 is the
density of the medium and c0 is the sound speed for small amplitude wave. The
sound pressure waveform distorts as it propagates due to this pressure dependence
of the speed.

To implement the non-linear effect into the TLM model, the sound speed is
made a function of the sound pressure at the node by adjusting the admittance
of the additional stub as previously discussed in Figure 8. When the normalized
admittance changes by as small as Dh from h0 due to the non-linearity of the
medium, the sound speed is given as

cn =X 2
(h0 +Dh)+4

c0 z 01−
1
2

Dh

h0 +41c'T (46)

Figure 12. Acoustic tube model and TLM solutions for a single-shot sine wave
(h=0, z=0, m=0) and solutions with the filtering capability (m=5).
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Figure 13. Relation between the propagation distance and the evaluation error with respect to
peak-to-peak pressure evaluation (Dl= l/40).

where c'T is given in equation (28) which is linear. Comparing the ratio of increase
of the sound speed in equations (45) and (46), one obtains the expression for Dh

Dh=−
(2h0 +8)n

r0c2
0

p. (47)

The non-linear effect can thus easily be introduced into the TLM by varying the
local sound speed. In equation (47), the condition h0 +Dhq 0 is required for
stable calculation.

3. NUMERICAL EXAMPLES

3.1. -- 

To check the validity of the TLM modelling as proposed, the simple problem
of a plane wave propagation in an acoustic tube is first examined. The tube is

Figure 14. A single-shot sine wave traveling through the lossy medium and its propagation
characteristics (z=5×10−3, Dl= l/40). w, without damping; W, with damping (z=5×10−3).
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Figure 15. Wave reflected from the end wall and the relation between the reflection coefficient
and the error (Dl= l/40).

modelled as a series of TLM elements as shown in Figure 12(a). In the model, one
end of the tube is terminated by the non-reflective boundary while another end
is driven by the velocity source of a train of pulses of single-shot sine envelope
with wavelength l and the side walls are considered to be rigid. The element length
Dl is chosen to be from l/10 to l/40 in order to check the accuracy.

Figure 12(b) shows the pressure waveforms as the sine wave with the amplitude
of 0·5 Pa propagates until the time 12T, where T is the period of the sine wave.
It is shown that the wave propagates at the speed of c0/z2 as expected in equation
(11). The fluctuation errors become pronounced as the wave propagates. This is
due to the presence of the higher order error terms resulting from the discretization
as expected in equation (42). The fluctuation decreases as the element length
becomes shorter. As with other numerical methods, the TLM method also requires
the fine mesh for an accurate solution. To reduce fluctuation errors, the
two-dimensional Gaussian filter as given by equation (44) is devised. The solutions
with the filtering are shown for m=5 in Figure 12(c). In this simulation the
filtering processing is provided every quarter of the period or T. The filtering
reduces the fluctuation at the expense of the slightly damped amplitude. Figure 13
shows a relation between the propagation distance and the error for the
peak-to-peak amplitude of the sine wave. The error increases as the wave
propagates, but the accuracy is practically satisfactory as it is within a few percent
at each propagation distance of the wavelength. The element size should be chosen
smaller than one-fortieth of the wavelength to achieve a practically admissible
accuracy.

Next demonstration is made for the capability of the modelling for the wave
propagating through the lossy media. The damping parameter z is chosen to be
5×10−3 which is equivalent to the attenuation constant a of 7·07×10−2

(neper/l). The propagation of a sine wave is shown in Figure 14(a). In the figure,
T'=T/z2 is the period in free space. The amplitude damps as the wave
propagates. Figure 14(b) shows the propagation characteristics. Fine and bold
lines indicate the cases without and with damping respectively. The amplitude
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Figure 16. Non-linear wave propagation for a single-shot sine wave (P=5 kPa, Dl= l/200).

damps exponentially with the propagation. The attenuation constant a is estimated
from the figure to be 7·09×10−2 (neper/l) which is in good agreement with the
original value.

To check the boundary condition, the reflection from the absorbing
non-reflective wall is examined. The model is almost the same as in Figure 12(a)
but the end of the tube is terminated by a certain impedance. The wave

Figure 17. Two-dimensional field and TLM network.
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Figure 18. Linear wave propagation for a single-shot sine wave in the two-dimensional field
(P=1 Pa, Dl= l/40).

propagation and the reflection from the wall are shown in Figure 15(a) in the case
for G=−0·5. Figure 15(b) shows the relation between the reflection coefficient
G and the error of the TLM solution. Though the error increases as G closes to
0, the practically admissible accuracy of a few percent is achieved.

The examination is then extended to the non-linear medium for which air is
assumed (sound speed co =340 m/s, density r0 =1·2 kg/m3 and non-linearity
parameter n=1·2). The model shown in Figure 12(a) is again used. Other
parameters are the same as in the linear case except that Dl is chosen to be as small
as l/200. The non-linear propagation is simulated for a single-shot sine wave with
the amplitude of 5 kPa. Figure 16 shows the pressure waveform transformation
up to the time 10T'. Figure 16(a) and (b) are the TLM solutions without and with
Gaussian filtering and Figure 16(c) is the analytical solutions [16, 17]. The filtering
operation is devised for each time step. The solutions are not stable without
filtering as shown in Figure 16(a). Its introduction helps to reduce the fluctuations
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as shown in Figure 16(b). The filter acts as an artificial viscosity which is sometimes
introduced to suppress the instability in the numerical calculation of fluid
dynamics. The waveforms distort as they propagate and the shock finally develops.
The TLM solutions with filtering agree well with the analytical solutions.
Non-linear sound propagation can thus be simulated with reasonable accuracy by
introducing the Gaussian spatial filtering.

3.2. - 

We proceed to the wave propagation in the two-dimensional field. The
two-dimensional sound field as shown in Figure 17 is taken. A plane piston source
with the width of the half wavelength l/2 is uniformly driven by the single-shot
sine wave. The square area of side length of 5l is taken. The medium is assumed
to be air. The buffle board outside the piston is assumed to be rigid and the other
boundaries are terminated by non-reflective boundary condition. Only a

Figure 19. Non-linear wave propagation for a single-shot sine wave in the two-dimensional field
(P=5 kPa, Dl= l/40).
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Figure 20. Linear wave propagation for a single-shot sine wave in the axisymmetric field
(P=1 Pa, Dl= l/40).

half-region is taken because the central plane of symmetry is taken to be rigid. The
element length Dl is chosen to be l/40.

The linear wave propagation of the amplitude of 1 Pa is illustrated until the time
5T' in Figure 18. Figure 18(a) and (b) show the TLM solutions without and with
Gaussian filtering, and Figure 18(c) finite element solutions with 200×200 first
order triangular elements. For the FEM, the time step Dt is chosen to be T/400.
Though the fluctuation errors also appear in the two-dimensional solutions as the
wave propagates, they can be reduced with the use of Gaussian filtering. The TLM
solutions show good agreement with the finite element solutions.

For the non-linear case, the amplitude is increased to 5 kPa. Other parameters
are the same as in the linear case. The non-linear wave propagation is illustrated
until the time 5T' in Figure 19. Figure 19(a) shows the TLM solutions with filtering
and Figure 19(b) shows the finite element solutions with second order triangular
elements. The waveform is again distorted as it propagates until the weak shock
develops. The TLM solutions again agree well with the finite element solutions.
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3.3.  - 

The wave propagation in the axisymmetric three-dimensional field is finally
considered. The cross-sectional area to be examined is the same as the
two-dimensional case except that the x and y axes are replaced by the z and r axes
in the axisymmetric case in which integration is carried out around the
u-circumferential direction. A circular piston source with a radius of 1l is
uniformly driven by the single-shot sine wave. Other conditions are the same as
in the two-dimensional case.

The linear wave propagation with the amplitude of 1 Pa is illustrated until time
5T' in Figure 20. Figure 20(a) shows the TLM solutions with Gaussian filtering
and Figure 20(b) shows the finite element solutions with 200×200 first order
triangular ring elements. For the axisymmetric case, the TLM solutions again
show good agreement with the finite element solutions.

4. CONCLUDING REMARKS

A discrete Huygens’ model is proposed which is a synonym of the
transmission-line matrix method, applied to the simulation of sound wave
propagation. The two-dimensional and axisymmetric TLM elements are obtained
for the sound field. Analogous and digital equivalent circuit expressions are
developed for the two-dimensional TLM elements. Their transfer characteristics
are examined theoretically. The discretization error is then considered and the
reduction technique is proposed using Gaussian filtering. It is found that the
Gaussian spatial filtering is necessary for non-linear wave propagation simulation.
The TLM solutions agree well with the analytical solutions. Some numerical
examples are demonstrated for two-dimensional and axisymmetric sound
radiation. Verifications are also made compared with the finite element solutions.
Wave propagations in the two-dimensional and axisymmetric field problems are
simulated on a computer and its validity and accuracy are examined for a plane
wave in an acoustic tube. The simulation shows that element size should be chosen
smaller than one-fortieth of the wavelength for reasonable accuracy and Gaussian
filtering is effective in reducing discretization errors. The modelling is extended to
the cases when the medium is non-linear. It is confirmed that the TLM approach
is useful in the time-domain analysis of both linear and non-linear sound
propagation.
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